If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-65.24=0
a = 1; b = 1; c = -65.24;
Δ = b2-4ac
Δ = 12-4·1·(-65.24)
Δ = 261.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{261.96}}{2*1}=\frac{-1-\sqrt{261.96}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{261.96}}{2*1}=\frac{-1+\sqrt{261.96}}{2} $
| (x-4)(2x+1)(3x-7)=0 | | 5x+7÷4-3x-8÷7=x+9÷2 | | 5x+7/4-3x-8/7=x+9/2 | | (x-6)^=25 | | 2(2x-5)+3(x+2)=6x-4 | | 6x2+3=5x3 | | 3(x-5)+11=2x-1 | | 15+5+1+2+x+(x-5)/6=9 | | 15+5+1+2+x+x-5/6=9 | | 3x-6÷31x-22=1÷3 | | 7y+7y=14 | | 3x-6÷31x-22=1÷13 | | C^2-6c+15=0 | | 16x+30x=280 | | (8x+3)-3(x-1)=6x+3 | | x*3=230 | | 2^x=4.25 | | 3(2-4)(2x-1)=4x-10 | | 2^x=4,25 | | 10x+8=38X= | | 3(t-12)^2@t=14 | | 5-2(x-1)=2(x+1)-15 | | -5z+14=8z | | 12/3+3/4=48/n | | 12/33/4=48/n | | C(t)=5t/(t^2+1) | | 9/10=n/14 | | 360/x/x=x | | x+(x+1)+(x+2)+(x+3)=3962 | | l+(-3)=-24 | | 15x-6=13x+4 | | |3x-4|=|4x-7| |